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SUMMARY

Sonic-boomwave shapes and caustic lines generatedby an airplaneper-
forminga generalmaneuverare studied. The equationsare programmedfor
graphicaloutput as a perspectiveview of the wave shape. This quasi-three-
dimensionalpresentationprovidesa qualitativeinsightinto the effectsof
the maneuveron the wave shape and the causticlocations.

For the specialcase of planar maneuvers,the principalcurvaturesof
the wave front are derived. These curvaturesare needed to calculatethe
sound field in the vicinityof a caustic.

The resultsof the analysisare applicablenot only to sonic-boomstudies
but also to the calculationof noise generatedby a supersonicrotor or pro-
peller blade tip.

INTRODUCTION

When a supersonic aircraft accelerates or turns, the wave front generated

by the flight trajectory develops folds or caustic lines. Special interest is
attached to the regions near caustics because the sonic boom overpressures are

enhanced in such regions. The sonic'boom literature contains a number of anal-

yses which treat the local conditions near a caustic. (See, for example,

refs. ] to 3.) Heretofore, these analyses have assumed expressions for the

local wave-front shape and curvature which are required to perform the calcula-

tion in the neighborhood of the caustic. The problem that remains is to relate

the wave-front shape and curvature to the actual maneuver that is being per-

formed by the aircraft generating the wave. The solution to this problem is

the primary subject of this paper.

Because of the complexity of the analysis, the expressions derived from

the wave-front curvatures are limited to planar maneuvers. This means simply

that the torsion of the flight trajectory is zero. The maneuver plane may be

horizontal, vertical, or skewed.

On the other hand, the equation for the rays and the wave-front shape is

not limited to planar maneuvers. Some types of sonic-boom problems, especially
those that are strongly dependent on refractive effects, are more advantageously

formulated in terms of the rays (refs. 4 and 5). However, when the flight pro-

gram involves turns and acceleration, the wave shape is no longer obvious, and

it is desirable to know the location of the entire wave front at any given time.

Other advantages of the wave-front formulation are discussed in reference ].

However, from an engineering standpoint, probably the greatest advantage of the
wave-front formulation is the intuitive understanding of the effects of maneu-

vers that it can provide. Toward this end, the wave-front equation has been

programmed with graphical output in the form of a perspective view of the wave.

This type of quasi-three-dimensional picture provides a rapid qualitative



insightinto the relationshipof the wave-frontshape and caustic locations
to the aircraftmaneuvers.

SYMBOLS

In numericexamples,distancesare nondimensionalizedin terms of the
distancethat sound travelsin ] second.

a speed of sound

5

A,B,C,D labels for groups of expressionsdefinedby equations (A4a)to (A4d),
respectively

E,F,G coefficientsof first fundamentalform for a surface,equations (A]b)
to (Aid),respectively

e,f,g coefficientsof second fundamentalform for a surface,equations (A2a)
to (A2c),respectively

i,j,k orthonormalbase vectors, fixed in space

M Mach number

unit vectorperpendicularto flight direction,in plane of maneuver

P curvatureparameter (seefig. 8)

R = a(t - T)

genericvector of point on shock wave

rt position vector of aircraft

s distance along flight path

unit base vector in directionof local tangentto flight path

t time, sec

V local flight speed

8 = M_- I

A denotesan incrementin a quantity

@ angle variable for curved flightpath

K total surfacecurvature
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< curvature

p 1/< radius of curvatureof flightpath

Q],Q2 principalcurvaturesof wave front

T time at which aircraft is at position

angle variable in plane of characteristic,measuredfrom horizontal

Subscripts:

t flightpath or trajectory

T derivativewith respectto T

derivativewith respectto

] first

2 second

A prime denotesa derivativewith respectto time.

ANALYSIS

Wave-FrontShape

It is convenientto use two_systemsof unit base vectors. One is the
usual system of unit vectors (i,j,k)fixed in space, with k taken normal to
the plane of the maneuver for planar trajectories. The other system of unit
base vectors (T,n,b)moves with the aircraft. (See fig. ].) The first vector,
T, is in the directionof flightand is definedby

d£t
- (la)
ds

or

d_t
= v'_ (]b)

dT



The second vector, H, is defined by

d_
- Kt_ (2a)

ds

or

d_
--= V<tH (2b)
dT

where <t is the curvatureof the flightpath. (See ref. 6, p. 18.) Since
is a unit vector, n is normal to T in the plane of the trajectory. For planar
maneuvers,the third vector 6 is parallel to k but may be oppositelydirected.

The flightprogrammay be definedin severaldifferentforms. It may be
given as a vector positionof time _t(T), as a trajectory _t(s) and velocity
functionof arc length V(s), or as a trajectory _t(s) and velocity function
of time V(T). In any case, the time and arc length parameterscan be related
by

_0 _ ds
V

or

S = VdT

At time t the pressuredisturbancecreatedby the moving aircraft at
time T has spread a distance R = a(t - T). If _(t,T) is the genericpoint
of this disturbance,and _t(T) is the source locationat time T, then the
equationfor the disturbancewave front is

(5 - _t) " (5 - _t) = a2(t - T)2 = R2 (3)



The shock surface is the envelopeof this one-parameter(T) familyof
spheres. The characteristiclines that comprisethis envelopeare found by
differentiatingequation (3)with respectto T and solvingthe resulting
equation simultaneouslywith equation (3). Thus,

(r - rt) " VT = aR (4a)

or

(_- _t) " _ = R/M (4b)

Thus the componentin the flightdirectionof a ray to the shock envelope
is R/M, which means that the characteristicline is a circlewith center at
rt + (R/M)T and with radius 8R/M. In the plane of this circle let @ denote
the angle with the horizontal• (Seefig. 2.) Then the vector equationfor the
shock surfaceat time t can be writtenexplicitlyin terms of the moving
trihedralbase vectors and the two parameters T and _ as follows:

a(t - T) _ aS(T) (t - T) cos _ aS(T)(t - T) sin @_
= T(T) + _(T) + b(T) + rt (5)

M(T) M(T) M(T)

If, on the other hand, both T and _ are held constantand t is
varied,then equation (5) describesthe trajectoryof an elementof the wave
front, that is, a ray.

The equationfor a causticline in the wave front at time t is found by
differentiatingequation (4)with respectto T and solvingthe resulting
equation simultaneouslywith equations (3) and (4). This is the mathematical
equivalentof the geometricconditionthat two consecutivecharacteristiccir-
cles be tangentto each other. The derivativeof equation (4) with respect to
T is

-_ V_ + (_ _t) • <V2 dT _>,

• - -- + V = -a2
ds

Substitutingfrom equations (1)and (2)yields

(_ - _t) " (V2<tn+ V'T) = 82a2 (6)



Combinedwith equation (4),this equationbecomes

(5 - _t) " _ = Pt V-_MJ (7a)

Equations (4) and (7a), respectively,give the componentsin the T and
directionsof the ray to a point on the caustic. The componentin the 6

directionfollowsfrom equation (1) as follows:

Equations (4) and (7) were given in reference7 in a slightlydifferent
form. In order to calculatethe wave shape from equation (5) or the caustic
line from equations (4) and (7), the moving vectors (T,n,b)must be expressed
in terms of the fixed base vectors (i,j,k)by using equations (1) and (2).

In the case of a straightacceleratingflight, <t is 0 and the coeffi-
cient of _ in equation (6)becomes zero. For this axisymmetriccase, the
causticline at time t is the circle determinedby the value of T that
satisfiesthe equation

82(T)M(T)
T + - t

M' (T)

which is obtainedfrom equations (4) and (6).

Wave-Shape Examples

Even relativelysimplemaneuverspresentsome interestingexamplesof
wave shapes. Figure 3 shows in perspectivethe causticline and a number of
the characteristiccirclescomprisingthe wave front that resultsfrom a simple
turn at constantspeed. Figure 4 shows how the wave folds on itself to form a
causticwhen the flight trajectorychanges from a straightflight to a turn.
Only the half of the wave above the flightplane is shown in order to avoid
the confusionof too many overlappinglines. Figure 5 shows a differentper-
spectiveof a similarmaneuver,but with the airplanedeceleratingat a con-
stant rate from an initialMach number of 2.4. The principaleffect of the
decelerationis to move the causticline fartherfrom the flight trajectory
than it would be for constantflight speed. Figure 6 shows a similarmaneuver
but with the airplaneacceleratingfrom an initialMach number of ].]. Two



causticlines appear in this case. The first occurs near the beginningof the
accelerationregion and is due to the acceleration,while the other is associ-
ated with the turningmaneuver.

The nature of the accelerationcaustic is better seen in a detailedplot
of the wave cross section (fig.7). At some distancefrom the flight path a
single causticline forms initially,but two causticlines appear as the wave
front crosses itself. These lines appear in the cross-sectionalplot as cusp-
like points of reversalof direction. Note, however,that they do not repre-
sent cusp or ar_te points in a causticline. Some experimentaldata on sonic-
boom ground patterns and signatureshapes are presentedin reference8.

Determinationof Wave-FrontCurvature

In order to calculatethe flow field in the vicinityof a caustic, it is
necessaryto know the curvatureof the wave front approachingthe causticline
(refs.] to 3). In addition,knowledgeof the curvaturedistributionover the
wave front providesan insightinto the relativeexpansionor compressionof
the wave.

The shock wave envelope is, except for straight,constant-speedflight,a
surfaceof double curvature. At a fixed time t, the equationof the surface
(eq. (5)) is a functionof the two variables T and @. The theory for calcu-
lating the curvatureswith the equation in this form is describedin chapter2
of reference7. The procedureis to calculatethe total radius of curvature,
which is the reciprocalof the total curvature. The detailsof the calculation,
which are somewhattedious,are given in the appendix. The result is as
follows:

- = PIP2 = -a(t - T) - a(t - T (8)
K

+ Ma<t cos
LsM

Some insight into the nature of the principalcurvaturescan be gained by
examiningthe exampleof straight,acceleratingflight. Since for this case
<t = 0, then D, f, and F are all zero (seeappendix). Consequently,the
curvaturedirectionsare orthogonaland the principalcurvaturescan be computed
by the followingequations (seeref. 6, p. 81):

e M' A M' -SB M'
_1 = _ = - =

E 82 A2 + B2 82 M2B2 8M2B



Therefore,

8M2B
Pl - (9a)

M'

Substitutingfor B gives

82Ma
QI = a(t - T) (9b)

M'

and

G MC
P2 - - - a(t - T) (10)

g 8

Thus, <1 is the curvatureof the meridiansalong the shock envelope.
This curvatureresults from the accelerationmaneuver. On the other hand,
<2 is the curvatureassociatedwith the normalacoustic spreadingof the wave
front.

Equation (10) could thereforehave been obtained by the followingargument.
Since,accordingto equation (4),the wave surfaceconsistsof circlesof radius

8a(t - T)
, the radius of curvature normal to the surface is this radius divided

M

by the cosine of the angle betweenthe normal to the surfaceand the radius vec-
tor of the circle. This result is in accordancewith Meusnier'stheorem (ref.6,
p. 76). Since this cosine is B/M, the normal radius of curvatureis simply
a(t - T), which is the same as equation (10).

This latter argumentis applicablelocallynot only for the case of
straightflight but also for a generalmaneuver. At any point on the shock
surfaceone of the principalradii of curvatureis P2 = a(t - T). Consequently,
accordingto equation (8), the other radius of curvatureis

82Ma
01 = a(t - T) - (11)

M' + 8M2a<t cos

The curvature _ resultsfrom the maneuver. The curvaturedirectionasso-
ciated with <1 is locallynormal to the characteristiccircle. Consequently,



near a caustic,where p] = 0, the curvaturedirectionis nearly normal to the
caustic, since the caustic is locally tangentto a characteristicline.

Thus, in the vicinityof a causticline whose curvatureis small compared
with K], the wave is approximatelytwo-dimensionalin characterwith its
radius of curvaturegiven by equation (]]).

The essentialexpressionin the curvaturecalculationis the last term in
equation (]]). This term (denotedby P) representsthe distanceof a point
on the causticline from the trajectorypoint at which it was emitted. It is
readilyseen that a positive accelerationdecreasesthis distanceand the
radiusof curvatureat a given distance along the ray, whereasa deceleration
has the opposite effect. These resultsare shown in the plots of figures8(a)
and 8(b). The Mach numbers (].2 and ].6) for which these exampleswere calcu-
lated are the instantaneousMach numbers at the time the caustic ray was emitted.
From the parameter P plotted in figure 8, the curvature p] can be calculated
as R - P, where R and P are the first and last terms on the right side of
equation (]]). The total curvatureis then ]/Rp]. Equation (]])could be
obtained in a brief but intuitivemanner as follows:

Substitute

a(t - T)
(5- _t) " _ -

M

and

8a(t- T) cos
(5 - _t) " n = M

into equation (6). This yields

a(t - T)(V2<t8 cos _ + V') = 82Ma (]2a)

or

82Ma
a(t - T) - = 0 (]2b)

M' + 8M2a<tcos

This is the conditionthat exists at a causticpoint. It can also be obtained
by setting p] = 0 in equation (]]). Therefore,by using dimensional



considerationsand the fact that the rays are straight,one can argue that
equation (11)followsfrom equation (12)withoutmaking the extensivecurva-
ture calculation.

Ray-TubeArea

An incidentalresult of the precedingcalculationfor the curvatureis a
formulafor the ray-tubearea. As given on page 63 of reference6, an elemental
area of the wave front is determinedby the square root of the discriminantof
the first fundamentalform:

AA = _EG - F2 dT d@

Thus, the variationof the cross-sectionalarea of a ray tube is deter-
mined by allowing t to vary in the expression KEG - F2, while holding T
and @ constant. Equations(A4a), (A4c),and (A8)yield R = a(t - T):

82a I] <M_i M<t e°s @IR1

_A - R + dT d_ (13)
M a 8

Equation (13) is the same result that was obtainedby Rao (refs.9 and ]0)
by means of a somewhatmore involveddevelopment. It may also be noted that
equation (5),for the wave shape, and equation (13),for the ray-tube area, are
useful not only for sonic-boomcalculationsassociatedwith maneuveringsuper-
sonic airplanesbut also for computingthe noise field of supersonicpropeller
or rotor tips.

Higher-OrderCausticLocations

A causticpoint representsa point of tangencyof two successivecharac-
teristiccirclesof the wave front. Under certainconditions,causticpoints
may also exist at which a higher-ordercontactoccurs among successivecharac-
teristics. Additionalcompression,beyond that normallyexperiencedat a
causticpoint,would be realizedat these points.

The locationof such a point is found by differentiatingequation (6)
with respectto T and solvingthe resultingequation simultaneouslywith
equations (3), (4), and (6). The derivativeof equation (6) is

-VT • (V2<t_ + V'T) + (VV'<t_+ V"T - V3<t2T + 2VV'<t6

+ V2<_) • (5 - _t) = 2VV'

I0



or, with terms collected,

(2- _t)" E(3W'I<t + V21<t_)_ + (V"- V3<t2)T] = 3VV ' (]4)

For some maneuvers,equation (14)does not have a solution. One example
is a straightlinear acceleration,for which <t = 0 and V" = 0. Another
example is a constantspeed, constantradius turn, for which V' = 0 and
<_ = 0.

It should also be noted that, even if it is possibleto solve equation (14),
the causticline does not necessarilyhave a cusped shape. A simpleexample is
straightnonlinearacceleration(V" # 0). If a value of t - T exists for
which both equations (6) and (14) are satisifed,then there is a higher-order
foldingof the wave along the correspondingcharacteristiccircle,but no cusp
is formed.

CONCLUDINGREMARKS

The relationshipof sonic-boomwave shapes and causticlines to the maneu-
ver performedby the generatingaircraft has been studied. The analysis treated
generalturningand acceleratingmaneuversin an isothermalatmosphere. The
equationswere programmedfor graphicaloutput in such a way that the wave
shape could be observed in a quasi-three-dimensionalperspectiveview in order
to providea qualitativeinsight into the effectsof the maneuveron the wave
shape.

For the specialcase of planarmaneuvers, the principalcurvaturesof the
wave front were calculated. These curvaturesare of interestin the calcula-
tion of the sound field in the immediatevicinityof a causticline.

Although the analysisis based on equationsoriginallyderivedfor a
maneuveringsupersonicairplane,the resultsare also applicableto the propa-
gation of sound from a supersonicrotor or propellertip.

Langley ResearchCenter
NationalAeronauticsand Space Administration
Hampton, VA 23665
December7, 1979
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APPENDIX

METHOD OF CALCULATION OF TOTAL RADIUS OF CURVATURE

This appendixprovides the detailsof the calculationof the wave-front
curvature K, which is the productof the two principalcurvatures, <] and
<2" The basic formula,which is given on page 83 of reference6, is

eg- f2
K - (A]a)

EG - F2

In this expression,the numeratoris the discriminantof the second funda-
mental form of the equationof the surface, and the denominatoris the discrim-
inant of the first fundamentalform. The individualquantitiesare the coeffi-
cientswhich are definedby

E = rT " rT (A]b)

F = rT " r@ (A]c)

G = _q_• rq5 (Aid)

Also requiredare the coefficientsof the second fundamentalform, definedby

e = (rTT " rT × r@)/_EG- F2 (A2a)

g --(_¢¢•_ × _¢)/_%G- F2 (_c)

The derivativesof r are obtained by differentiatingequation (5):

182Ma M'a(t - T) _I la M'a(t - T) cos @
rT = - 8<ta2(t- T) cos T + 2<t(t - T) +

S2 8M2

IEMa- _ + --- sin ¢ 6 (A3)
M 8M2

12



APPENDIX

In order to simplifythe calculations,the mathematicalexpressionsmay be
grouped as follows:

82a M'a(t - T)
A - - 8<ta2(t - T) cos _ (A4a)

M M2

M'a(t - T) 8a
B H (A4b)

8M2 M

8a(t - T)
C _ (A4c)

M

D - <ta2(t - T) (A4d)

Thus,

A = -8(B + D cos @) (A4e)

In terms of these groupings,equation (A3)becomes

rT = AT + (D + B cos @)_ + B sin @ 5 (A5)

The derivativeof equation (5)with respect to @ is

_@ = -C sin @ n + C cos @ 6 (A6)

The coefficientsof the first fundamentalform can now be obtained from equa-
tions (At), (A5), and (A6):

E = A2 + D2 + 2BD cos @ + B2 (A7a)

F = -CD sin _ (A7b)

]3



APPENDIX

G = C2 (A7c)

The discriminantof the first fundamentalform is found by substitutingequa-
tions (A7) into the expression EG - F2 and simplifyingby using equations (A4).
This yields

M2C2A2
EG - F2 - (A8)

82

The second derivativesare required in the calculationof the coefficientsof
the second fundamentalform:

rTT = EA' - V<t(B cos @ + D)3T + (V<tA+ B' cos @ + D')H + B' sin @ 6 (A9a)

rT@ = 8D sin @ T - B sin @ _ + B cos _ _ (A9b)

_@ = -C(cos @ H + sin _ 6) (A9c)

From equations (A5)and (A6),

rT × r_ = C(B + D cos _)T - AC cos _ n - AC sin _ 5

or, from equation (A4e),

rT x r@ = -AC<_ T + cos @ n + sin @ b> (A]O)

The first coefficient, e, is obtained from equations (A2a), (A9a), (A8),
and (_ 0):

M ]

e : - _[A' - V<t(B cos _ + D)_ - cos @(9]<tA+ B' cos @ + D') - B' sin2

(A]])

14



APPENDI X

From equation (A4e) ,

MM !

A' = -8(B' + D' Oos _) - _(B + D COS @)8

MS !

= -8(B' + D' COS @) +- A
82

Consequently,the first term and the last three terms on the right side of
equation (A]]) combineto yield MM'A/83. Thus,

e = -- + (B - 8A) cos @ + D
82 M

However,

B cos @ + D = (B + D cos @) cos _ + D sin2 @

Acos
- + D sin2

8

Therefore,

 tcos >= - + cos @ + A + a_tD sin2e
M

or

M2atosA + a_tD sin2 @ (A]2a)
e --- + 8

]5



APPENDIX

The second coefficient, f, is obtainedfrom equations (A9b)and A]0):

f = -ACD sin @<M_>

8D sin
f = (A]25)

M

Similarly,from equations(A9c) and (A]0),

8c
g - (A]2c)

M

The discriminantof the second fundamentalform can be obtained from
equations (A]2):

IM_ _> 8a<tCD sin2 _ 82D2 sin2 @
eg - f2 = _ + Ma<t cos CA +

M M2

Since Ca<t = 8D/M, the last two terms cancel:

eg - f2 = _ + Ma<t cos CA (A]3)

The total curvaturecan then be calculatedby using equations (A8) and (A]3):

K = <]<2 = - --- -- + Ma<t cos
EG-F2 M2AC\BM

]6



APPENDIX

It is more convenientto work with the reciprocal,which after substituting
from equation (11), is

-= Q102 = -a(t - T) - a(t - T) (A]4)
K

"_M + Ma<t cos

17
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Wave_front
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Flight path

Figure 3.- Perspectiveview of wave front with causticresultingfrom a
constant-curvature turn at M = ].'16.
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Figure 4.- Portionof wave front above flight plane for a straight
flightpath succeededby a constant-radiusturn at M = ].3.
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Flight path

Normal view of flight path
(Turn radius = 22.9 km)

Figure 5.- Portionof wave front above flightplane for a straight flight path
succeededby a constant-radiusturn with aircraftdeceleratingfrom M = 2.4
to M = ].52 at dM/dT = -0.004/sec.
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Figure 6.- Portionof wave front above flightplane for a straight flight path
succeededby a constant radiuswith aircraftacceleratingfrom M = ].1 to
M = 3.1 at dM/dT = 0.0]6/sec.



50

\ Causti

p___q_R \ Cou_,ic\

Caustic _

,o_  oin,"_50 70
0 I I I I I I I I I I I I
30 40 50 60 70 80 90 I00 II0 120 130 140 150

S

Figure 7.- Cross sectionof developingwave resultingfrom straightlinear
accelerationfor T < 30 sec, M = ].2; for 30 < T < 60, V' = ]g; and
for T > 60, V' = 0.
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